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ABSTRACT
The inflow and near-field of a jet which is excited by an axial mass

source located in the potential core are simulated numerically. The simu-~
lation takes into account the spreading of the jet. Comparison is made
with experimental results for both excited and unexcited jets. It is
shown that many of the features observed experimentally are due to the
instability of the mean profile (i.e. the large scale structures) and not
due to the turbulence. This instability is shown to generate low frequency
sound. The terms identified by Ribner as the shear noise terms are shown

to be responsible for this sound generation.
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I. Introduction

This paper is concerned with the effect of a jet flow on an embedded
acoustic source. It is primarily a numerical investigation of the full
Euler equations linearized about a realistic, spreading axisymmetric jet.
The source is modelled by a mass source located along the axis of the jet
and downstream of the jet exit. The source is assumed to have a pulse-like
behavior in time so that a broadband frequency spectrum can be investigated.

The numerical.simulation is computed in a computational domain which
includes both the in-flow, near and far-fields. It is thus possible to
compute both in-flow instabilities and far-field sound and to study the
interaction between them. The simulation has no mechanism to resolve the
fine grained turbulence.

In a previous paper the far-field sound was studied. It was shown
both experimentally and numerically that an acoustic source placed in a
jet had an increase in powef output due to the flow. This paper is con-
cerned with an investigation of the near field under the same circumstances
as the earlier far-field study.

Many authors have observed large scale orderly structures in the flow
field of a jet. Crow andAChampagne2 and Moore3 investigated this structure
in excited jets and related it to the instability of the mean jet profile.
Maestrello and Funga measured the fluctuating pressure just outside the
boundary of an unexcited jet. They found a low frequency, axisymmetric
structure which peaks at roughly three diameters downstream of the nozzle
and decays further downstream. Similar disturbances were observed by
Chan.5 Tam6 demonstrated analytically that an acoustic source could excite
instability waves in a supersonic jet.

Vlasov and Ginevsky reported a large amplification in the fluctuating

velocity when they excited the jet by an acoustic disturbance. Their results
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did not indicate whether the resultant increase was due to a large scale
structure or small scale turbulent fluctuation. Zaman and Hussain8 excited
the jet upstream of the nozzle and found a large increase in the time
averaged Reynold's stresses.

Michalke’

has shown that instability waves of infinite extent, such

as those obtained by a parallel flow approximation can not generate sound.
In a realistic jet spatial, instability waves grow exponentially and then
decay due to the spread of the jet and the thickening of the shear layer.
In general the lower frequencies peak further downstream. LiulO computed
instability waves in a free shear layer, by ﬁsing parallel flow theory
together with an aiially varying shape function which satisfied an energy
propagation equation. Tam and Morrisll have recently used a multiple scale
analysis to demonstrate that instability waves in a spreading, free shear
layer generate far-field sound.

Experimental results presented by McLaughlin, et al.lz indicated that
instability waves generate sound in low Réynold's number supersonic jets.
Numerical and experimental results presented in reference 1 indicated that
the far-field sound produced by an axial source was amplified when the
source was placed in a jet. It was further shown that the maximum ampli-
fication occurred at the frequency which was most unstable at the pogition
of the source. This strongly suggested that the amplification was due to
sound generation by instability waves. Bechert and Pfizenmaier13 also
measured an increase in far-field power when the jet was excited upstream
of the nozzle.

In this paper the generation of sound by instability waves will be
explicitly demonstrated by examination of near-field data. In addition, the

generation of large scale structures and their temporal evaluation will be



studied. It will also be shown that many of the qualitative features
observed experimentally in the flow field and near-field of both excited
and unexcited jets can be described by linear instability theory.

The results will also demonstrate that the specific terms responsible
for destabilizing the flow are analagous to the shear noise terms identified

14,15 and others (see Doak6) based on the general source term

by Ribner
in the Lighthill17 analogy. Many authors have tried to modify the Light-
hill theory to account for propagation through a mean flow. Since the
Lighthill equation is in principal exact, this requires identifying the
propagation operator (i.e., left hand side) and the sources (right hand
side) which must necessarily be modelled. The formulation of Phillip518
led to a convective wave equation which neglected these shear noise terms.

19 led to a third order equation which

The subsequent formulation by Lilly
accounted for all first order interactions between the fluctuating and mean
fields. Ribner14 pointed out that the shift of the shear terms from source
terms to the left hand side was an essential step in obtaining tilley's
equation. He further showed that the shear terms were an important compohent
of the low frequency part of the spectra.

Computations with iilly's equation were performed by Tester and Morfrey.20
These computations were based on the parallel flow approximation and were
thus unable to simulate the generation of sound by instability waves.
Schubert21 and Maestrello and Liu22 computed with a Phillip's type convec-
tive wave equation in a spreading jet and were thus unable to trigger the
instability of the mean flow. The results presented here exhibit the shear

noise terms as those which destabilize the flow and thus generéte sound

through the action of the large scale structures.



In section 2 the governing equations are introduced and the numerical
simulation is discussed. Further details can be found in reference 1.

Section 3 contains the results and a discussion of their significance.

1I. Theory

We consider the Euler equations in axisymmetric, cylindrical coordinates
z and r linearized about mean profiles of the form (UO,VO,po). Here UO

and V. are the mean axial and radial velocity profiles of the jet and Po

0
is the mean density which for simplicity is assumed constant. The mean pro-
files were obtained experimentally by Maestrello.23 This profile has a
spread of about 11° from a virtual origin 2.57 diameters upstream of the
nozzle exit. If the flow is also assumed to be homentropic the mean sound

speed, o is also constant. The fluctuating pressure and velocities

(p,u,v) are then the sclution to the following system of equations

V.p+vp c2
(a) + Uap+upcd) + (Vp+vpacl) +-—2—-00_o
Pe oP T UPp/ oP T VP00 ¢ T ’
v P _ =
(b) u, + (bou-f-po)z + (Vou)r qu,r + VUO,r 0, (2.1)
2y _ =
(c) v, + (Uov)z + (Voyi-po)r VUO’Z + qu,z 0.

The forcing term m corresponds to the time rate of change of an
an axial source of mass/unit volume which is assumed to dominate the

natural sources. This mass source is generally taken to be of the form

n(t,x) = f(t)cs(I;-;Ol),



where f(t) is chosen to have the pulse-like form

f(t) = e t >0,

for positive constants a and b. These constants are chosen so that
the resultant pulse has a peak at around 1000 Hz. The § function is
approximated by a Gaussian.

The left-hand side of (2.1) includes all of the first order inter-
action terms between the fluctuating and mean fields and in particular
includes the equations governing linear stability theory. In the far-
field as U, and V

0 0

governing the propagation of acoustic radiation. The undifferentiated

+ 0 we can recover the ordinary wave. equation

terms on the left-hand side of (2.1b,c) represent the interaction of the
fluctuating field with the mean shear. They are large only in the vicinity
of the jet shear layer, however it is exactly these terms which initiate
the instability-of the mean flow.

Formulations which do not allow for these terms can not correctly
simulate the near-field. Results presented here and in ref. 1, using
numerical experiments whereby these terﬁs are simply switched off, demon-
strate that these shear noise terms are also responsible for increases
in the far-field sound via the generation of sound from instability waves.

The computational domain is a rectangular region in the 1,z plane,
with the jet exiting from a constant area pipe upstream of the source (see
figure 1). The equations are solved by the method of time splitting using

X \ . X 1,2
a fourth order discretization in space.”’ 4

The details of the numerical
algorithm are described in detail in reference 1. The scheme is of MacCormack

type, with fourth accuracy in the spatial variables.24



Boundary conditions at the far-field boundary must simulate
outgoing radiation. The appropriate time dependent version of the

Sommerfeld radiation condition is

where u 1is the radial Velocity.l At the upstream nozzle boundary we

impose

v =20

pt+u 0,

valid for low frequency wave propagation down the pipe.
The jet has a nozzle diameter (D) of 5.08 cm. The simulations were
conducted at an exit Mach number of 0.66, corresponding to a Reynolds

number based on diameter of approximately 8 X 105.

I1I. Results and Discussion

Results are obtained for the fluctuating pressure and for the veloci-
ties in both the broad and narrow band. Numerical results are also obtained
with the shear interaction terms in (2.1) formally set to zero. In reference
1 it was found that without these terms there was virtually no far field
power amplification for the low frequencies.

The mean flow U, will have an inflection point within the shear

0

layer of the jet. As a conéequence of this inflection point, U0 will be
linearly unstable. The instability will diminish with downstream distance

as the region around the inflection point flattens out. In Figure 3

we plot U= UO/Uc as well as 9dU/dr as a function of r/D at the



downstream station z/D = 2. The velocity Uc refers to the center line

velocity. The region around the inflection point will become broader

further downstream.

The r.m.s. speed u2+v2 is shown in Figs. 3a and 3b as a function
of the radial distance r/D, at two downstream locations. The figures
show the results with and without flow and with and without the shear
intéraction terms.

The results with flow show a very strong amplification in the region
of the inflection point. The large amplification is consistent with the
amplification of the fluctuating velocities measured in references 7 and
23. The méasurements in reference 7 were primarily concerned with small
scale turbulence, although these measurements must have included the
larger scale instability waves.

The velocity amplification exhibits a narrow peék at z/D = 2 where
the shear layer is véry thin. At 2z/D = 4.2 the peak flattens out towards
the jet centerline as the shear layer thickens. This behavior is very
similar to r.m.s. velocity fluctuations observed experimentally in unex-

2 Since the numerical simulation does not include

cited jets (see Fig. 4).2
ﬁurbulenqe it is evident that this behaviour is a consequence of the
large scale structure. This is further confirmed by the absence of these
strong peaks when the destabilizing shear terms are omitted.

We next consider the time averaged Reynold's stressess (uv) and

extra vorticity (%%w—%% (multiplied by r) induced by the sound pulse.

In Figs. 6a and 6b these quantities are plotted as functions of r/D for
the two downstream locations z/D = 2 and z/D = 4.2. The plots of the
pulse-induced vorticity indicate the presence of two vortical regions of

opposite sign superimposed on the mean flow vorticity. It can further be



seen that the Reynold's stresses peak near the point of maximum shear
and become slightly negative near the jet boundary and near the axis.
These numerical plots are likewise typical of experimental results ob-
tained for both excited and unexcited jets (see for example reference 8).

The area under the curves of Figs. 5a and 5b (and other curves of
similar shape not shown) is nonzero (negative). This indicates that the
1ntégra1 of the time-average phlse-in&uced vorticity over the cross-
section of the jet is nonzero for these stations. It seems a safe in-
ference that the volume integral of this extra yorticity over: the firsf
6 diameters at least is nonzero. Whether this would be caﬁcelled by an
integral of the remainder of the jet remains open.q The possibiiiﬁy of ;
creation of extra vorticity by a sound pulse in a jét raises in#erésting
theoretical questions. One mechanism of transiént’vorticity genefation  ‘
is vortex stretching/compression during passage of the pulse, but this
would tend to yield a zero time average.

To further exhibit the relatiénship between the inflow fluctuating'
field and spatial instability waves we consider the loﬁgitddinal'fiucP E
tuating velocity in the frequency domain -(G(z,r,f)). Insgability waves

~ based on linear spatial stability theory have the functional form

G(z,r,£) = e ¥t 1928 (1)a(2), (3.1)

where w = 27f, a(z) 1is the wave number computed from stability theory,
f(r) 1is the corresponding eigenfunction and A(z) is a slowly varying
amplitude (see reference 10). The jet profile is known to be unstable

to axisymmetric low frequency disturbances; thus there always exist solu-

tions that grow along the axis (ui Z imag. part of o > 0).



The solution can be represented as a superposition of time harmonic
waves by Fourier transforming the data. In Fig. 6 an approximation to
the disturbance growth rate oy is obtained by fitting the functional
form (3.1) to the data output along the axis r = 0 (ai). The growth
raté is plotted at different downstream stations as a function of
is the jet velocity. The peak growth rate

Stz = fz/U, = 0.3, where U

3 3
occurs at approximately Stz "~ 0.3. In reference 1 it is shown that
Stz v 0.3 corresponds to the peak amplification of the far-field acoustic

power.

The growth rates plotted in Fig. 6 are qualitatively similar to
those obtained by Mattingly and Chang25 using a model profile. The
amplification rate peaks at roughly three diameters downstream and
decrease as 2z 1increases further. Further downstream the helical mode
may be the most unstable mode.25 This mode is not present in the numeri-
cal simulation because of the axial symmetry.

We next consider the near-field fluctuating pressure. Since measure-
ments of the pressure fluctuations can be most readily interpreted
when taken outside of the flow, we compute the near-field pressure fluc-
tuations ratio (power spectrum with flow/power spectrum with no flow)
just outside the jet at 2z/D = 2, 4.2, and 6. The results, when plotted
against Stz in Fig. 7 show a peak near Stz = 0.4, which is close to
the peak computed for the far-field amplification (see reference 1).

In Figure 8 the experimental counterpart is shown as a function of
longitudinal Strouhal number Stz for three values of StD = fD/Uj. It
is noted that the peak pressure occurs at Stz v 0.6, In geference 4 this
structure is attributed to the instability of the jet. Experimental results
with the excited jet reported in reference 1 show the peak far-field spectral

amplification occurring near the same Strouhal number Stz = 0.6.
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To further study the structure of the near field and in-flow
field fluctuating pressure, we present contour plots of p as a func-

tion of z/D and time t with r/D fixed. Pressure is normalized by

the distance \./(r/D)2 + (z/D)2 in order to simplify the interpretation
In Figs. 9a through 9f these plots are given for r/D =0, .4, .86, 1.5,
2.3, and 3.3. For comparison we present in Fig. 10 a similar plot with
r/D = 0 for the no flow case.

The interesting feature to observe in these plots is the splitting
of the original pulse into two pulses in the presence of the flow. The
first pulse can clearly be identified as the acoustic pulse since it
travels with a velocity which tends to the ambient sound speed o
(normalized to unity in the figure). The actual speed is slightly larger
due to convection effects. We note that the pulse is reduced in amplitude
from the no flow case (Fig. 10) and is considerably broadened. This is
a refraction effect and outside the flow the acoustic field is strongly
amplified for the reasons discussed earlier.

The second pulse is much broader and travels with a group velocity
proportional to the local mean flow U,. The proportionality constant is
about 0.7 which is close to the value measured by Crow and Champagne.2
After initial growth the pulse decays within the jet and will not reach
the far-field. The pulse is much greater than the acoustic pulse for
r/D near the inflection point and decays at a very fast rate bevond.

It is evident from the figures that the instability wave is itself
split into a leading and a trailing pulse. The initial stages of the pulse
formation are very complicated. However, by studying the development of
the pulse for different source positions, we have found the trailing part
of this wave to be delayed when the source is placed further from the

nozzle exit. The leading pulse does not have such a lag. This suggests



-11-

that the trailing pulse 1s generated by interaction with the nozzle while
the leading pulse is generated by interaction with the shear layer near
the source.* The authors plan to examine the details of this large scale
structure in a subsequent publication.

A different view of this large scale structure can be seen in figures
l1a, b, ¢ where perspective plots of the fluctuating pressure are shbwn at
a fixed time as a function of r/D and 2z/D. It is clearly seen that the
omission of the shear terms prevents the formation of the instability wave.
Figure 1llc shows the difference between the two simulations. Comparison
between Fig. 1lla and 11lb clearly indicates the acoustic enhancement due to
the instability wave. The generation of sound by the large scale structure

is clearly indicated by these fesults.

Iv. Conclusion

The numerical simulation predicts a large amplification of the in-flow
fluctuating field in an excited jet. A large scale axisymmetric structufe
is seen to be generated. This is accompanied by an increasé in the far-
field acoustic intensity. Both phenomena occur primarily in the low to
medium frequency range and have been observed experimental (see ref. 1).
There is clear evidence that this amplification is due to the triggering
of instability waves by the pulse.

On omitting the shear interaction terms between the fluctuating
velocities and the mean flow gradients, the far-field is greatly reduced.
Furthermore, the far-field directivity pattern becomes similar to the
patterns obtained from an ordinary convective wave equation which are

attributed mainly to refraction effects.

* v
This phenomena was suggested to the authors by Prof. Christopher K. W. Tam.
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These flow gradient terms are in effect the shear noise source terms
in the Lighthill equation. Ribner14 showed that the shear noise term is
largely responsible for low frequency sound radiation in a jet. The
results indicate that this noise is generated by the so-called large scale
structures.

The results presented here were obtained by solving a hyperbolic
initial value boundary value problem. In ref. 1 a family of boundary
conditions were introduced, which enabled the fluctuating field to be
computed in a computational domain which is localized in the vicinity of
the flow. This suggest that the in-flow data, computed in a relatively
small region near the flow can be input into existing theories of aero-
dynamic noise (e.g. refs. 17, 26) to compute the sound generated by the

large scale structures.
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